Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 217
Filtrar
1.
Interdiscip Perspect Infect Dis ; 2024: 3554734, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558876

RESUMO

Background: Although meningitis caused by Salmonella species is relatively rare and accounts for <1% of the confirmed cases in neonates, it is associated with case complications and fatality rates up to 50-70% when compared to other forms of Gram-negative bacilli meningitis. Objectives: We conducted an investigation into the first reported case of neonatal meningitis caused by nontyphoidal S. enterica in Jazan, a region in the southwestern part of Saudi Arabia. Methods: CSF and blood culture were collected from a female neonate patient to confirm the presence of bacterial meningitis. WGS was conducted to find out the comprehensive genomic characterization of S. enterica isolate. Results: A 3-week-old infant was admitted to a local hospital with fever, poor feeding, and hypoactivity. She was diagnosed with Salmonella meningitis and bacteremia caused by S. enterica, which was sensitive to all antimicrobials tested. WGS revealed the specific strain to be S. enterica serotype Johannesburg JZ01, belonging to ST515 and cgMLST 304742. Conclusions: We presented a genomic report of rare case of NTS meningitis in an infant who is living in a rural town in Jazan region, Saudi Arabia. Further research is required to understand the impact of host genetic factors on invasive nontyphoidal Salmonella infection.

3.
J Infect Public Health ; 17(4): 669-675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447323

RESUMO

BACKGROUND: This study presents a comprehensive genomic analysis of NDM and OXA-48-producing Klebsiella pneumoniae in the Western region of Saudi Arabia, traversed by tens of millions of Muslims from various countries annually. This significant influx of visitors invariably leads to the spread and diversity of MDR bacteria. METHODS: Genome sequencing was performed using MiSeq system of 29 CPKP isolates that were NDM and OXA-48-positive isolated from nosocomial infections and demonstrated resistance to most antibiotics, including carbapenems. RESULTS: WGS analysis showed that 12 (41.3%) isolates co-harbored blaOXA-48,blaCTX-M-15 and blaNDM genes. Notably, 16 (55.1%) isolates were identified as high-risk clone ST14, with 50% of these isolates co-harbored blaOXA-48, blaNDM and blaCTX-M-15 genes. All ST14 isolates were identified as capsular genotype KL2 and O1/O2v1 antigen with yersiniabactin locus ypt 14 carried by ICEKp5. The two isolates were identified as ST2096/KL64 hypervirulent K. pneumoniae (hvKp) clone harboring several virulence factors, including the regulator of the mucoid phenotype rmpA2 and aerobactin (iuc-1). Interestingly, two of the hvKp ST383/KL30 isolates were resistant to all tested antimicrobials except colistin and tigecycline, and simultaneously carried numerous ESBLs and carbapenemase genes. These isolates also harbor several virulence factors such as rmpA1, rmpA2, carried on KpVP-1, and aerobactin (iuc-1). CONCLUSION: this study provides insights into the spread and prevalence of high-risk clones of CPKP in the Western region of Saudi Arabia. The ST14 high-risk clone appears to be the predominant CPKP clone in this region, posing a significant threat to public health. This study also reports the presence of two globally disseminated hypervirulent K. pneumoniae (hvKp) clones, namely ST2096 and ST383. Therefore, it is essential to improve surveillance and implement strict infection control measures in this region, which receives a substantial number of visitors to effectively monitor and reduce the spread of high-risk clones of antimicrobial-resistant bacteria, including CPKP.


Assuntos
Ácidos Hidroxâmicos , Infecções por Klebsiella , Klebsiella pneumoniae , Humanos , Infecções por Klebsiella/epidemiologia , Infecções por Klebsiella/microbiologia , Arábia Saudita/epidemiologia , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Fatores de Virulência/genética , Genômica , Testes de Sensibilidade Microbiana
4.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469784

RESUMO

BACKGROUND: Hepatitis B virus (HBV) and hepatitis C virus (HCV) are major health concerns worldwide. Recent data indicate a decline in prevalence in the Saudi population; however, there are no data on the prevalence in prisoners. This study is the first to investigate the prevalence of viral hepatitis in female inmates in Jeddah, Saudi Arabia. This study aimed to explore the prevalence of HBV and HCV infections and to assess the knowledge and attitudes related to these infections among inmates. METHODS: Inmates were interviewed using a pre-designed questionnaire, and their blood samples were tested for HBV and HCV infections using serology, PCR, and phylogenetic analysis. RESULTS: The overall prevalence of HBV infection in the study population was 4.4%. The age group > 25 years was predominantly affected; 11.1% of the infected cases were Saudi nationals, and 88.9% were non-Saudis. The prevalence of HCV infection was 2.4%. Among the studied variables, age and previous employment were significantly associated with positive HBV PCR, while conviction, knowledge about protection from sexually transmitted infections (STIs), knowledge about condom use for protection against STIs, and condom use for protection against STIs were significantly associated with HCV infection. CONCLUSIONS: This study shows higher HBV and HCV prevalence in the female prisoners in Briman prison compared to the general population. Uneducated prisoners, over 25 years old, and convicted of prostitution are more associated with both HBV and HCV infection. Future preventive plans should include screening new prisoners with these risk factors for HBV and HCV at the time of entry.


Assuntos
Infecções por HIV , Hepatite B , Hepatite C , Prisioneiros , Infecções Sexualmente Transmissíveis , Humanos , Feminino , Adulto , Prisões , Arábia Saudita/epidemiologia , Filogenia , Hepatite B/diagnóstico , Hepatite B/epidemiologia , Hepatite B/complicações , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Hepatite C/complicações , Fatores de Risco , Infecções Sexualmente Transmissíveis/complicações , Vírus da Hepatite B , Hepacivirus , Prevalência , Infecções por HIV/complicações
5.
Saudi J Biol Sci ; 31(4): 103957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404539

RESUMO

Colostrum is known for its nutraceutical qualities, probiotic attributes, and health benefits. The aim of this study was to profile colostrum microbiome from bovine in rural sites of a developing country. The focus was on microbiological safety assessments and antimicrobial resistance, taking into account the risks linked with the consumption of raw colostrum. Shotgun sequencing was employed to analyze microbiome in raw buffalo and cow colostrum. Alpha and beta diversity analyses revealed increased inter and intra-variability within colostrum samples' microbiome from both livestock species. The colostrum microbiome was mainly comprised of bacteria, with over 90% abundance, whereas fungi and viruses were found in minor abundance. Known probiotic species, such as Leuconostoc mesenteroides, Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus paracasei, were found in the colostrum samples. A relatively higher number of pathogenic and opportunistic pathogenic bacteria were identified in colostrum from both animals, including clinically significant bacteria like Clostridium botulinum, Pseudomonas aeruginosa, Escherichia coli, and Listeria monocytogenes. Binning retrieved 11 high-quality metagenome-assembled genomes (MAGs), with three MAGs potentially representing novel species from the genera Psychrobacter and Pantoea. Notably, 175 antimicrobial resistance genes (ARGs) and variants were detected, with 55 of them common to both buffalo and cow colostrum metagenomes. These ARGs confer resistance against aminoglycoside, fluoroquinolone, tetracycline, sulfonamide, and peptide antibiotics. In conclusion, this study describes a thorough overview of microbial communities in buffalo and cow colostrum samples. It emphasizes the importance of hygienic processing and pasteurization in minimizing the potential transmission of harmful microorganisms linked to the consumption of colostrum.

6.
Heliyon ; 10(1): e23027, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163192

RESUMO

The risk of transmission of respiratory tract infections is considerably enhanced at mass gathering (MG) religious events. Hajj is an annual Islamic MG event with approximately 3 million Muslim pilgrims from over 180 countries concentrated in Makkah, Saudi Arabia. This study aimed to investigate the genetic diversity of influenza viruses circulating among pilgrims during the Hajj pilgrimage. We performed a cross-sectional analytical study where nasopharyngeal swabs (NPs) from pilgrims with respiratory tract illnesses presenting to healthcare facilities during the 2019 Hajj were screened for influenza viruses. Influenza A subtypes and influenza B lineages were determined by multiplex RT-PCR for positive influenza samples. The phylogenetic analysis was carried out for the hemagglutination (HA) gene. Out of 185 nasopharyngeal samples, 54 were positive for the human influenza virus. Of these, 27 were influenza A H1N1 and 19 H3N2, 4 were untypable influenza A, and 4 were influenza B. Phylogenetic analysis revealed that the H1N1 and H3N2 strains differentiated into different and independent genetic groups and formed close clusters with selected strains of influenza viruses from various locations. To conclude, this study demonstrates a high genetic diversity of circulating influenza A subtypes among pilgrims during the Hajj Season. There is a need for further larger studies to investigate in-depth the genetic characteristics of influenza viruses and other respiratory viruses during Hajj seasons.

7.
Saudi Med J ; 45(1): 60-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38220236

RESUMO

OBJECTIVES: To analyze the evolution of tuberculosis (TB) epidemiology in Saudi Arabia in the 5 years following the implementation of the end-TB Strategy. METHODS: A retrospective analysis of surveillance data, reported by the national tuberculosis control program from 2015-2019, was carried out. The annual incidence and the percentage of yearly changes were calculated and compared to the World Health Organization (WHO) milestones, which anticipate a 4-5% annual decline. Additionally, various other epidemiological indicators of TB were examined. RESULTS: The national TB incidence declined from 10.55% per 100,000 in 2015 to 8.76% per 100,000 in 2019, aligning with the WHO's 2019 milestone estimated between 8.59-8.96% per 100,000. While Makkah Region (40.3%) and Riyadh (24.6%) accounted for the majority of cases, Jazan region consistently exhibited the highest incidence throughout the study period. Demographic features shifted towards a younger age category, male, and native dominance. There was a consistent decrease in resistance and intermediate sensitivity to all first-line anti-TB drugs, associated with a substantial decrease in both polydrug resistance (from 4.7-1.9%; p<0.001) and multidrug resistance (from 4.4-2.4%; p=0.008). CONCLUSION: The figures of TB incidence TB in Saudi Arabia between 2015-2019 has met the WHO end-TB milestones, predicting successful progress toward the 2035 goal.


Assuntos
Tuberculose , Masculino , Humanos , Estudos Retrospectivos , Arábia Saudita/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Tuberculose/tratamento farmacológico , Antituberculosos/uso terapêutico , Incidência
8.
J Biomol Struct Dyn ; 42(2): 948-959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37139795

RESUMO

The majority of the world population (around 25%) has latent Mycobacterium tuberculosis (Mtb) infection, among which only 5-10% of individuals develop active tuberculosis (TB), and 90-95% continue to have latent tuberculosis infection. This makes it the biggest global health concern. It has been reported that the resuscitation-promoting factor B (RpfB) is an exciting potential target for tuberculosis drug discovery due to its significant role in the reactivation of latent TB infection to an active infection. Several attempts have been made to investigate potential inhibitors against RpfB utilizing in-silico approaches. The present study also utilized a computational approach to investigate microbially derived natural compounds against the Mtb RpfB protein which is a very cost-effective This evaluation used structure-based virtual screening (SBVS), drug-likeness profiling, molecular docking, molecular dynamics simulation, and free-binding energy calculations. Six potential natural compounds, viz. Cyclizidine I, Boremexin C, Xenocoumacin 2, PM-94128, Cutinostatin B, and (+)1-O-demethylvariecolorquinone A were selected, which displayed a potential binding affinity between -52.39 and -60.87 Kcal/mol MMGBSA score and docking energy between -7.307 Kcal/mol to -6.972 Kcal/mol. All the complexes showed acceptable stability (<2.7 Å RMSD) during 100 ns MD simulation time except the RpfB protein-xenocoumacin 2 complex. This result exhibited that the selected compounds have high efficiency in inhibiting the Mtb RpfB and can be taken into account for additional in vitro and in vivo experimental validation.Communicated by Ramaswamy H. Sarma.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Fator B do Complemento/metabolismo , Simulação de Acoplamento Molecular , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular
9.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059867

RESUMO

Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.


Assuntos
Carbapenêmicos , Colistina , Animais , Humanos , Colistina/farmacologia , Carbapenêmicos/farmacologia , Prevalência , Saúde Pública , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/genética , Plasmídeos , Aquicultura , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
10.
Mar Drugs ; 21(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132947

RESUMO

Middle East Respiratory Syndrome (MERS) is a viral respiratory disease caused b a special type of coronavirus called MERS-CoV. In the search for effective substances against the MERS-CoV main protease, we looked into compounds from brown algae, known for their medicinal benefits. From a set of 1212 such compounds, our computer-based screening highlighted four-CMNPD27819, CMNPD1843, CMNPD4184, and CMNPD3156. These showed good potential in how they might attach to the MERS-CoV protease, comparable to a known inhibitor. We confirmed these results with multiple computer tests. Studies on the dynamics and steadiness of these compounds with the MERS-CoV protease were performed using molecular dynamics (MD) simulations. Metrics like RMSD and RMSF showed their stability. We also studied how these compounds and the protease interact in detail. An analysis technique, PCA, showed changes in atomic positions over time. Overall, our computer studies suggest brown algae compounds could be valuable in fighting MERS. However, experimental validation is needed to prove their real-world effectiveness.


Assuntos
Infecções por Coronavirus , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Proteínas Virais , Infecções por Coronavirus/tratamento farmacológico , Endopeptidases , Peptídeo Hidrolases/farmacologia
11.
PeerJ ; 11: e16273, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901472

RESUMO

Head lice (Pediculus humanus capitis) are a major global concern, and there is growing evidence of an increase in head lice prevalence among Saudi schoolchildren. The purpose of this study is to investigate the prevalence of an insecticidal resistance mutation in head lice collected from schoolchildren. A polymerase chain reaction (PCR) was used to amplify a segment of the voltage-gated sodium channel gene subunit to assess the prevalence and distribution of the kdr T917I mutation in head lice. Subsequently, the restriction fragment length polymorphism (RFLP) patterns revealed two genotypic forms: homozygous-susceptible (SS) and homozygous-resistant (RR). The results showed that 17 (37.80%) of the 45 samples were SS, whereas 28 (62.2%) were RR and T917I and L920F point mutations were found in the nucleotide and amino acid sequences of RR. Compared to other nations, the frequency of permethrin resistance mutation in the head louse population in Saudi Arabia was low. This study provides the first evidence of permethrin resistance mutation in human head lice in Saudi Arabia. The findings of this study will highlight the rising incidence of the kdr mutation in head lice in Saudi Arabia.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Animais , Humanos , Criança , Permetrina/farmacologia , Pediculus/genética , Arábia Saudita/epidemiologia , Inseticidas/farmacologia , Prevalência , Infestações por Piolhos/epidemiologia , Mutação/genética , Estudantes
12.
J Biomol Struct Dyn ; : 1-17, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37811742

RESUMO

Japanese encephalitis (JE), a neurological infection of severe nature, is caused by the Japanese encephalitis virus (JEV) and is transmitted by the mosquito vector. The polymerase domain of Non-structural 5 (NS5), which is also referred to as RdRp (RNA-dependent RNA polymerase), is considered a potential therapeutic target for JEV. The present study employed molecular dynamics modelling and high-throughput virtual screening to evaluate the possible antiviral activity of anti-dengue drugs against JEV RdRp. Furthermore, a ranking was performed utilising the MM/GBSA analysis to identify the three most promising compounds. Compound ID 57409246 exhibited the highest binding affinity with the protein, as evidenced by its minimum binding free energy of -72.96 kcal/mole. In contrast, the other two compounds had minimum binding free energies of -67.57 and -59.19 kcal/mole, respectively. Upon conducting a 100 nanosecond molecular dynamics simulation to confirm the binding of the chemical complexes, it was observed that the three hits, namely 57409246, 70683874, and 44577154, exhibited a consistent and stable RMSD. Subsequently, the binding strength of the trajectory was confirmed through MM/GBSA analysis. The compounds 70683874 and 57409246 exhibited the lowest binding free energies, which were -97.58 kcal/mol and -96.38 kcal/mol, respectively. The binding free energy (ΔG Bind) values for the native ligand ATP and molecule 44577154 were -65.64 kcal/mol and -69.44 kcal/mol, respectively. Overall, compared to the native ligand ATP, all three compounds exhibited higher binding affinity. The study proposes three anti-dengue molecules as a potential remedy for JE, which can be confirmed through in vitro and in vivo investigations.Communicated by Ramaswamy H. Sarma.

13.
Sci Rep ; 13(1): 14570, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37666979

RESUMO

Monkeypox viral infection is an emerging threat and a major concern for the human population. The lack of drug molecules to treat this disease may worsen the problem. Identifying potential drug targets can significantly improve the process of developing potent drug molecules for treating monkeypox. The proteins responsible for viral replication are attractive drug targets. Identifying potential inhibitors from known drug molecules that target these proteins can be key to finding a cure for monkeypox. In this work, two viral proteins, DNA-dependent RNA polymerase (DdRp) and viral core cysteine proteinase, were considered as potential drug targets. Sixteen antibiotic drugs from the tetracycline class were screened against both viral proteins through high-throughput virtual screening. These tetracycline class of antibiotic drugs have the ability to inhibit bacterial protein synthesis, which makes these antibiotics drugs a prominent candidate for drug repurposing. Based on the screening result obtained against DdRp, top two compounds, namely Tigecycline and Eravacycline with docking scores of - 8.88 and - 7.87 kcal/mol, respectively, were selected for further analysis. Omadacycline and minocycline, with docking scores of - 10.60 and - 7.51 kcal/mol, are the top two compounds obtained after screening proteinase with the drug library. These compounds, along with reference compounds GTP for DdRp and tecovirimat for proteinase, were used to form protein-ligand complexes, followed by their evaluation through a 300 ns molecular dynamic simulation. The MM/GBSA binding free energy calculation and principal components analysis of these selected complexes were also conducted for understanding the dynamic stability and binding affinity of these compounds with respective target proteins. Overall, this study demonstrates the repurposing of tetracycline-derived drugs as a therapeutic solution for monkeypox viral infection.


Assuntos
Vírus da Varíola dos Macacos , Humanos , Reposicionamento de Medicamentos , Antibacterianos/farmacologia , Tetraciclina/farmacologia , Minociclina , Descoberta de Drogas , Peptídeo Hidrolases
14.
Foods ; 12(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761051

RESUMO

This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects.

15.
Viruses ; 15(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37632081

RESUMO

The Ebola virus and its close relative, the Marburg virus, both belong to the family Filoviridae and are highly hazardous and contagious viruses. With a mortality rate ranging from 23% to 90%, depending on the specific outbreak, the development of effective antiviral interventions is crucial for reducing fatalities and mitigating the impact of Marburg virus outbreaks. In this investigation, a virtual screening approach was employed to evaluate 2042 natural compounds for their potential interactions with the VP35 protein of the Marburg virus. Average and worst binding energies were calculated for all 20 poses, and compounds that exhibited binding energies <-6 kcal/mol in both criteria were selected for further analysis. Based on binding energies, only six compounds (Estradiol benzoate, INVEGA (paliperidone), Isosilybin, Protopanaxadiol, Permethrin, and Bufalin) were selected for subsequent investigations, focusing on interaction analysis. Among these selected compounds, Estradiol benzoate, INVEGA (paliperidone), and Isosilybin showed strong hydrogen bonds, while the others did not. In this study, the compounds Myricetin, Isosilybin, and Estradiol benzoate were subjected to a molecular dynamics (MD) simulation and free binding energy calculation using MM/GBSA analysis. The reference component Myricetin served as a control. Estradiol benzoate exhibited the most stable and consistent root-mean-square deviation (RMSD) values, whereas Isosilybin showed significant fluctuations in RMSD. The compound Estradiol benzoate exhibited the lowest ΔG binding free energy (-22.89 kcal/mol), surpassing the control compound's binding energy (-9.29 kcal/mol). Overall, this investigation suggested that Estradiol benzoate possesses favorable binding free energies, indicating a potential inhibitory mechanism against the VP35 protein of the Marburg virus. The study proposes that these natural compounds could serve as a therapeutic option for preventing Marburg virus infection. However, experimental validation is required to further corroborate these findings.


Assuntos
Ebolavirus , Marburgvirus , Quimioinformática , Palmitato de Paliperidona , Biblioteca Gênica
16.
J Biomol Struct Dyn ; : 1-13, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37551014

RESUMO

Tuberculosis infection has always been a global concern for public health, and the mortality rate has increased tremendously every year. The ability of the resuscitation Mycobacterium tuberculosis (Mtb) from the dormant state is one of the major reasons for the epidemic spread of tuberculosis infection, especially latent tuberculosis infection (LTBI). The element that encourages resuscitation, RpfB (resuscitation-promoting factors B), is mostly in charge of bringing Mtb out of slumber. This reason makes RpfB a promising target for developing tuberculosis drugs because of the effects of latent tuberculosis. Therefore, this work was executed using a computational three-level screening of the Selleckhem antibiotics database consisting of 462 antibiotics against the ligand binding region of the RpfB protein, followed by an estimation of binding free energy for ideal identification and confirmation of potential RpfB inhibitor. Subsequently, three antibiotic drug molecules, i.e., Amikacin hydrate (-66.87 kcal/mol), Isepamicin sulphate (-60.8 kcal/mol), and Bekanamycin (-46.89 kcal/mol), were selected on the basis of their binding free energy value for further computational studies in comparison to reference ligand, 4-benzoyl-2-nitrophenyl thiocyanate (NPT7). Based on the intermolecular interaction profiling, 200 ns molecular dynamic simulation (MD), post-simulation analysis and principal component analysis (PCA), the selected antibiotics showed substantial stability with the RpfB protein compared to the NPT7 inhibitor. Conclusively based on the computational results, the preferred drugs can be potent inhibitors of the RpfB protein, which can be further validated using in vivo research and in vitro enzyme inhibition to understand their therapeutic activity against tuberculosis infection.Communicated by Ramaswamy H. Sarma.

17.
One Health ; 17: 100601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37520847

RESUMO

High seroprevalence rates of several phleboviruses have been reported in domestic animals and humans in sandfly-infested regions. Sandfly Fever Sicilian virus (SFSV) and Toscana virus (TOSV) are two of these viruses commonly transmitted by Phlebotomus sandflies. While SFSV can cause rapidly resolving mild febrile illness, TOSV could involve the central nervous system (CNS), causing diseases ranging from aseptic meningitis to meningoencephalitis. Sandfly-associated phleboviruses have not been investigated before in Saudi Arabia and are potential causes of infection given the prevalence of sandflies in the country. Here, we investigated the seroprevalence of SFSV and TOSV in the western region of Saudi Arabia in samples collected from blood donors, livestock animals, and animal handlers. An overall seroprevalence of 9.4% and 0.8% was found in humans for SFSV and TOSV, respectively. Seropositivity was significantly higher in non-Saudis compared to Saudis and increased significantly with age especially for SFSV. The highest seropositivity rate was among samples collected from animal handlers. Specifically, in blood donors, 6.4% and 0.7% tested positive for SFSV and TOSV nAbs, respectively. Animal handlers showed higher seroprevalence rates of 16% and 1% for anti-SFSV and anti-TOSV nAbs, respectively, suggesting that contact with livestock animals could be a risk factor. Indeed, sera from livestock animals showed seropositivity of 53.3% and 4.4% in cows, 27.5% and 7.8% in sheep, 2.2% and 0.0% in goats, and 10.0% and 2.3% in camels for SFSV and TOSV, respectively. Together, these results suggest that both SFSV and TOSV are circulating in the western region of Saudi Arabia in humans and livestock animals, albeit at different rates, and that age and contact with livestock animals could represent risk factors for infection with these viruses.

18.
Viruses ; 15(7)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515188

RESUMO

The World Health Organization (WHO) has designated the Zika virus (ZIKV) as a significant risk to the general public's health. Currently, there are no vaccinations or medications available to treat or prevent infection with the Zika virus. Thus, it is urgently required to develop a highly efficient therapeutic molecule. In the presented study, a computationally intensive search was carried out to identify potent compounds that have the potential to bind and block the activity of ZIKV NS5 RNA-dependent RNA polymerase (RdRp). The anti-dengue chemical library was subjected to high-throughput virtual screening and MM/GBSA analysis in order to rate the potential candidates. The top three compounds were then chosen. According to the MM/GBSA analysis, compound 127042987 from the database had the highest binding affinity to the protein with a minimum binding free energy of -77.16 kcal/mole. Compound 127042987 had the most stable RMSD trend and the greatest number of hydrogen bond interactions when these chemical complexes were evaluated further under a 100 ns molecular dynamics simulation. Compound 127042987 displayed the best binding free energy (GBind) of -96.50 kcal/mol, surpassing the native ligand binding energy (-66.17 kcal/mole). Thereafter, an MM/GBSA binding free energy study was conducted to validate the stability of selected chemical complexes. Overall, this study illustrated that compound 127042987 showed preferred binding free energies, suggesting a possible inhibitory mechanism against ZIKV-RdRp. As per this study, it was proposed that compound 127042987 could be used as a therapeutic option to prevent Zika virus infection. These compounds need to be tested in experiments for further validation.


Assuntos
Infecção por Zika virus , Zika virus , Humanos , Zika virus/genética , Antivirais/química , RNA Polimerase Dependente de RNA/genética , Infecção por Zika virus/tratamento farmacológico , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular
19.
Molecules ; 28(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37298889

RESUMO

The body's normal immune response against any invading pathogen that causes infection in the body results in inflammation. The sudden transformation in inflammation leads to the rise of inflammatory diseases such as chronic inflammatory bowel disease, autoimmune disorders, and colorectal cancer (different types of cancer develop at the site of chronic infection and inflammation). Inflammation results in two ways: short-term inflammation i.e., non-specific, involves the action of various immune cells; the other results in long-term reactions lasting for months or years. It is specific and causes angiogenesis, fibrosis, tissue destruction, and cancer progression at the site of inflammation. Cancer progression relies on the interaction between the host microenvironment and tumor cells along with the inflammatory responses, fibroblast, and vascular cells. The two pathways that have been identified connecting inflammation and cancer are the extrinsic and intrinsic pathways. Both have their own specific role in linking inflammation to cancer, involving various transcription factors such as Nuclear factor kappa B, Activator of transcription, Single transducer, and Hypoxia-inducible factor, which in turn regulates the inflammatory responses via Soluble mediators cytokines (such as Interleukin-6, Hematopoietin-1/Erythropoietin, and tumor necrosis factor), chemokines (such as Cyclooxygenase-2, C-X-C Motif chemokines ligand-8, and IL-8), inflammatory cells, cellular components (such as suppressor cells derived from myeloid, tumor-associated macrophage, and acidophils), and promotes tumorigenesis. The treatment of these chronic inflammatory diseases is challenging and needs early detection and diagnosis. Nanotechnology is a booming field nowadays for its rapid action and easy penetration inside the infected destined cells. Nanoparticles are widely classified into different categories based on their different factors and properties such as size, shape, cytotoxicity, and others. Nanoparticles emerged as excellent with highly progressive medical inventions to cure diseases such as cancer, inflammatory diseases, and others. Nanoparticles have shown higher binding capacity with the biomolecules in inflammation reduction and lowers the oxidative stress inside tissue/cells. In this review, we have overall discussed inflammatory pathways that link inflammation to cancer, major inflammatory diseases, and the potent action of nanoparticles in chronic inflammation-related diseases.


Assuntos
Inflamação , Neoplasias , Humanos , Inflamação/tratamento farmacológico , Neoplasias/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...